CHARACTERISTICS OF THERMAL RADIATION
IN AXISYMMETRIC CAVITIES

V. P. Simonov UDC 536.241

Radiation heat transfer in axisymmetric cavities with a lateral surface formed by a trun-
cated cone and plane ends is investigated. A numerical example is considered for a range
of cavities. The calculated results are universal and can be used for rapid estimates of
radiation heat transfer.

The solution of many engineering problems requires calculation of the radiation heat transfer in ca-
vities of various shapes., We shall consider axisymmetric cavities with a lateral surface formed by a
truncated cone; the ends are planes. The investigated cavity and the coordinate system used in the solu-
tion are shown schematically in Fig. 1. The emissivities ¢j of each surface bounding the cavity are con-
stant but differ in general; the temperature is an arbitrary function of the coordinate (all parameters are
taken to be constant with respect to the angular coordinate ¢).

In deriving the system of integral equations describing the process of radiation heat {ransfer in the
cavity we assume that the processes of emission and reflection of radiation energy are diffuse. Using the
approach of [1] we set up the radiation energy balance equation for arbitrary elementary areas situated on
the inside surface of the cavity. The energy leaving the area with the coordinate ry {surface 1, Fig. 1)
equals the sum of the self-emission and the reflected emission

B(r) = e,0T*{rg) + (1 —eYH(ry). (1)
Analogous relationships are set up for the areas belonging to surfaces 2 and 3.

There is a second expression that is paired with (1); it comes from a consideration of the sources
of the incident radiation H(rg):
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In (2) dFy _, and dFy _p* are elementary angular coefficients of the area with the coordinate ry with re-
spect to the annular elements with the coordinate x {surface 2) and r* {(surface 3). We shall derive the
formulas determining the d¥* later.

Substituting (2) into (1) we obtain
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The analogous equations for the areas with the coordinates x, (surface 2) and r{ (surface 3) have the
form
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Equations (3)-(5) represent the desired system of inte~
[ gral equations in the unknown functions B.
~ay
T - y #" We take dFf _,.x as the example for derivation of the
arsfd / ﬂﬂ’ - formulas for the angular coefficients. Figure 1 shows an
'r,,\, e d | annular element and areas on surfaces 3 and 1 respectively.
4 rl I iy i We assume that the temperature T(r*) is constant within the
i RN ‘ 7= limits of an annular element. By definition the angular co-
a dy j efficient of the area dA; = rydedr, with respect to the area
! z 173 dA, = r*dodr* is determined by the formula [2]
i Z
| L cos B, cos ﬁ
a ' dFdA1~41Az = *h_;“ da,. (6)
Summing all areas lying within the annular element, we ob-
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* + COS C N
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£y 17 g =/ £=5%/ €r=
73=0 7m0 70 72" 0 Evaluating the integral on the right side of (7) we finally get
. the formula
Fig. 1. Schematic representation of dF . — (LR ro - r*) df: (8)
the cavities investigated (b) and the co- (L2 75 - reopp — arveg[ 3

ordinate system used (a). In like manner we derive formulas for the other angular co-

efficient occurring in the system (3)-(5); they have the form
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L costo
n (10)-(14)
Ry=R--(L—xjtgo; R,=R ~ (L—x)tge, {15)

the remaining notation will be clear from Fig. 1la.

System (3)-(5) is quite general and may be used to calculate the radiation heat transfer in axisym-
metric cavities having shapes other than that shown in Fig. la by letting €j =1, T; =0 (i =1, 2, 3 is the
number of the surface). Calculations can be carried out for cavities having the shapes indicated in Fig.
1b. To make the solutions of (3)-(5) universal we refer all linear dimensions occurring in the above for-
mulas to the radius R of the end surface 1 (we shall not use the new designations in the ensuing discussion)
and introduce certain functions

B

———, 16
oT1{(0) 16)

€, =
which for an isothermal cavity (Tj = const) represent the local apparent emissivity of the cavity walls [1].

We further assume that the temperatures T,(r) = Ty = const, T3(r*) = Ty = const, and that the temperature
of surface 2 varies linearly.
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Fig. 2. Apparent emissivity (L = 1.0, & = 0.7): a)
closed cavity (@ = 45°, dashed curve; « = 0°, solid
curve); b) cavities open at one end (@ = 45°, dashed
and dot-dashed curves; o = 0°, solid curve); c) cavi-
ties open at both ends, and two disks (o = 45°, dashed
curve; « = 0° solid curve).

Let Ty = kTy; then
To(x) =T (1 —R)x - k] = T,f (&, x). 17
In addition, €y = €4 = €5 = € (except for the cases considered in Fig. 1b).

System (3)-(5) then becomes

L Rt \
talr) =2 —~(1—8)[ e, dFy .+ [ e, () dF, ], (3"
) ,

(]

1 L
ea () = eft (. ) (1 —o)[ (e, (VdFs, + (e, (00 dFs, .+
0

6

@l*
+ [ e (r*)dFs, ], @)
0
! L .
&, (ro) = ekt — (1 —¢) “ e, (r)dF; ., + S £, (x) dF*I_;_J. (5')
0 0 )

We solve (3')-(5') numerically by the iteration method. To do this we divide the segments [0,1], [0, L],
and [0, R*] into 50 equal parts. The distances between node points are hy = 0.02, hy = 0.02 L and hy.«
= 0.02R*, respectively. Each integral occurring in (3')-(5') is replaced by the sum of 25 integrals that
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can be evaluated between 0 and 2hy, 2hy and 4h;., etc. Equation (3') is then written as

- 2nh
25 Qn."z " ] . r* )
L) =c+(—a 2| | @i+ [ e(dfn| (3")
n=i -k, (Drzu?)fzr*

Equations ¢') and (5') are of similar form {we call them (4") and (5"})}. On each segment of integration g4
the unknown functions [(2n— 2)h, 2nh] are approximated by a polynomial of degree two; the reference points
for this approximation are the values of the functions £4 at the node points (2n~ 2)h, (2n— 1)h, and 2nh.

2nh

Each integral § e, dF* is evaluated by Simpson's rule with automatic choice of step.
(2n—2)1

The iterations are organized as follows: the functions eq (x) = efi(k, x), £4(r*) = ek? are used as the
zeroth approximation and (3") is calculated, which yields e‘a (r). We next use this function to calculate (5")
(the function aia (r*)). In the last step the calculated functions Eia (r) and E‘a (r*) are used to solyve (4").

The computational procedure then repeats. The process terminates when the condition
(O
| << 0,005, (A)

e —ea
g
is satisfied, where j is the number of the iteration.

The singularities at the corner points x = 0, vr* = R*, and x = L, r = 1 are bypassed in the following
manner: for (3"), for example, on each iteration calculations are carried out at the nodes O, hy, Zhy |
{n— 1)hy, and at the node point nhy = 1 the value of the function g4 (1) is found by extrapolation; a poly-
nomial of second degree is used which is constructed from the reference points at the nodes (n— 3)hy,

(n— 2)hp, and (n— 1)hy. An analogous procedure was used to solve (4") and (5"). It took 3~11 iterations
to solve the problem.

Calculations were carried out for the range of cavities shown in Fig. 1b. We took k = 0.5; 1.0; 1.5
(see (7)), € = 0.7, o = 0°, and 45°, L= 1.0.

Analyzing the results shown in Fig. 2(a,b, ¢), we conclude the following: for closed cavities (see
Fig. 2a) with an isothermal wall (Tj = const) the result is trivial: the emissivity is €4 = 1 for any point of
the cavity. For k # 1 the temperature distribution along the cavity axis begins to play an important role;
the geometric factor (cavity flare angles of & = 0° and 45°) does not have much influence and leads to a
maximum difference of 30%.

Figure 2b shows the calculated results for cavities open at one end. The solid and dashed lines rep-
resent data for a cavity with the open end to the right (@ = 0° and 45°, respectively); the dash-dotted lines
represent data for a cavity open to the left (@ = 45°). The o = 0° case (isothermal cavity) served as the
model problem and was compared with the results of [1]. The results are in full agreement.

Here, as before, the decisive role was played by the temperature distribution; a geometric factor
such as the cavity flare angle had far less influence.

The results calculated for a cavity open at both ends (@ = 0° and 45°) are plotted at the center of Fig.
2¢c; the sides of the figure show data for heat transfer between two disks.

The data of Fig. 2a,b, ¢ are universal in nature and permit rapid estimation of radiation heat trans-
fer (with the aid of (1), (18)).

NOTATION

is the temperature;
is the Stefan—Boltzmann congtant:
is the emissivity;
r¥, X, @ are the running coordinates;
is the effective radiation flux;
is the incident radiation heat flux;
is the elementary angular coefficient;
is the angle determining the orientation of the normal to the elementary area;
is the distance between elementary areas;

m‘m%mmwmqpa
*
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dA is the value of an elementary area;

R, L, R*, o are parameters determining the shape of the cavity;

€q is the apparent emissivity;

k is the ratio between cavity end-surface temperatures;

flk, x) is the function determining the temperature distribution along the lateral surface of the
cavity;

h is the distance between node points in the numerical solution of the system of integral
equations;

i is the surface number;

j is the iteration number.

LITERATURE CITED

1. E. M. Sparrow, L.Yu, Albers, and £, D, Eckert, "Thermal-radiation characteristics of cylin-
drical enclosures," J. Heat Transfer, C84, No. 1, 73-81 (1962).

2. A. G. Blockh, Fundamentals of Radiation Heat Transfer [in Russian], Moscow— Leningrad,
Gosénergoizdat (1962).

926



